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“Transistor to Processor”
•• Quantum Abyss (Dave Quantum Abyss (Dave WinelandWineland, NIST), NIST)
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Bridging the Gap
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•• The History of Integrated CircuitsThe History of Integrated Circuits
- …(ICs are) made from different electrical components 

such as transistors, resistors, capacitors and diodes,
that are connected to each other in different ways…

- First Integrated Circuit (Kilby & Noyce, 1958)
- “…reduce the cost of electronic functions by a factor of a

million to one, nothing had ever done that…” - Kilby

•• Good integration technologyGood integration technology
- Capability to integrate ALL ELEMENTS required
- Each element integration approach has to be scalable
- For ion trap QC, this includes traps, ion motion control,

laser sources, beam delivery, state detection, quantum
state transfer (wires) and classical control

http://nobelprize.org/physics/educational/integrated_circuit/history/



Technology for Scaling Ion Traps
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Elements of Ion Trap Quantum Computer
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Kim et al., Quant. Inf. Comp. 5, 515 (2005)
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Lucent LambdaRouterTM All Optical Switch
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I/O SM 
Fibers

Imaging 
Lenses

MEMS 2-axis 
Tilt Mirrors

Pros:Pros: Only feasible Technology to scale to Large Portcount
- Number of devices needed scales as 2N
- Overall system yield robust to device yield

Proper design eliminates path length-dependent loss

Cons:Cons: Switch complexity is in analog control of mirror tilts
- N2 conditions for all possible connections

2D vs. 3D Switching Architecture

Reflector





Critical Components – Optical MEMS
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Surface Micromachined Mirror Bulk Micromachined Mirror

Insertion Loss MapFocal Length Map

Focal Length Target +/- 3 %, Insertion Loss 0.1- 0.3dB (~10K/wafer)



1296x1296 Optical Switch
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One of the most complex optical systems!!

-5184 chip IOs
-2592 fibers
-1296 laser

beams
-10,368 HV DACs
-1296 photo-

detectors
-1,679,616 

possible states
-Advanced control
-Optimization

AlgorithmsJ. Kim et al., IEEE PTL 15, p 1537 (2003)



1296 System in Action
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•• Precision control of mirror position to establish connectionsPrecision control of mirror position to establish connections





Largest Non-blocking OXC
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Loss (dB)

• Loss is Connection Independent
• Spurious Higher Loss Ports
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Switch Fabric Design Considerations
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Optical
Design

•• System design is multiSystem design is multi--dimensional optimization problemdimensional optimization problem
- Starting from requirements, constrained by technology!!
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MEMS Technology Adaptation for Ion Traps
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•• Optical Communication Technology providesOptical Communication Technology provides
- Platform for high density, high functionality optical systems
- Challenge is tailoring the technology for ion trap QCs

•• Optical FunctionalityOptical Functionality
- What functions should be implemented using micro-optics? 
- Analysis of tolerance, operation speed, etc.

•• Operational RequirementsOperational Requirements
- UV wavelength operation
- Power handling capability
- Polarization maintenance

•• Vacuum Compatibility?Vacuum Compatibility?
- Mirror cooling
- High quality factor: ringing in mirror motion
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Scalable State Measurement Problem
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•• Two Critical ElementsTwo Critical Elements
- “Pump” beam delivery to multiple zones
- High efficiency multi-pixel photon detection

•• MultiMulti--zone State Measurement: Why?zone State Measurement: Why?
- Current solutions are considered not scalable (NIST group)
- Optical requirements are modest while illuminating
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Beam Delivery - Micromirrors
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• Optical Design
– f ~ w0 ~ r ~ 1/q

• Actuation Torque t
– t ~ r3V2/g2
– Necessary torsional stiffness
– k ~ t/q ~ r4V2/g2 : Controlled by design

• Mirror Moment of Inertia
– I ~ mr2 ~ t r4
– Resonance frequency f ~ (k/I)½ ~ (V2/t g2)½

• Conclusions: Independent of radius r!!
Control voltage is critical variable

• Radius is determined if we desire critical damping



Preliminary Micromirror Performance
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•• Devices fabricated at foundry (Devices fabricated at foundry (MEMScAPMEMScAP, Inc.), Inc.)
•• PostPost--processing done at Dukeprocessing done at Duke

- Mirror reflectivity ~ 70% at 313 nm
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Collection Optics and Detectors
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•• System Requirements (D. System Requirements (D. LeibfriedLeibfried, NIST), NIST)
- Single ion generates ~ 1 pW into F/# = 1 optics (~1.6M ph/s)
- Need BER < 1% with < 200 µs integration time

•• Measurement Noise ModelMeasurement Noise Model

Ion Collection Optics

~ 1 pW

Detector
QE η, Gain M

Excess Noise factor F

Readout
Electronics
Thermal Noise iT

•• SignalSignal--toto--noise estimation at the input of amplifiernoise estimation at the input of amplifier
- Signal level affected by detector QE and gain
- Noise contribution from signal shot noise, detector

multiplication noise and amplifier thermal noise

SNR
Estimation

Kim et al. Nonclassical light from semiconductor lasers and LEDs, Ch 12, Springer (2001)



Example: Photomultiplier Tube
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•• AssumptionsAssumptions
- QE of 10%, M = 106 Photon counting mode
- SNR limited by signal shot noise, need ~9-12 detected 

photons to achieve 10-3-10-4 BER
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Example: Standard CCD
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•• AssumptionsAssumptions
- QE of 65%, No gain Charge integration mode
- SNR limited by readout thermal noise
- ~1 ms integration time needed
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Example: Intensified CCD/APD
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•• AssumptionsAssumptions
- QE of 65%, M = 100, Charge integration mode
- SNR limited mostly by shot noise
- Variety of detectors fall in this category 
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Example: “Dream” Detector
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•• AssumptionsAssumptions
- QE of 65%, arrayed, M >>1, F=1, Photon counting mode
- Too good to be true? – Penalty is low temperature operation
- Integration time can be reduced to ~10 µs 
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Collection Optics Strategies
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•• ChallengeChallenge
- Low F/# lens has small field of view and large aberration

Ion trap chip

Imaging Optics

CCD / imaging device

Conventional Approach

Ion trap chip Detector chip

Spacers

Detector Devices
(w/ micro-optics)

Flip-chip
Bonding

Direct Integration Approach

Detector Array

Conventional Optics
Or Fiber Array

Use of Microlenses



Outlook
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•• Fully Integrated Optics?Fully Integrated Optics?
- Optical Integration cannot be an “after-thought”!!
- Surface trap has LOTS of advantages…
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